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ABSTRACT 

A failure of emergency core cooling system (ECCS) during a certain small break loss of 
coolant accident (SBLOCA) can cause a severe core uncovery and fuel failure. The safety 
injection systems (SISs) might not function properly in case of a SBLOCA, due to the slight 
change of pressure in the pipes. Early trend of the major parameters has to be observed and the 
accurate information has to be given to the nuclear power plant (NPP) operators by precisely 
identifying the break size to effectively manage accidents. In this study, the objective is to 
provide to operators the information on the break size in a short time by considering the 
accident situations such as hot-leg LOCA, cold-leg LOCA, steam generator tube rupture 
(SGTR). A cascaded support vector regression (CSVR) is used in order to estimate the break 
size. The simulation data set was obtained from the optimized power plant reactor 1000 
(OPR1000) using modular accident analysis program (MAAP) code. And genetic algorithm 
(GA) was used to select the input variables of the CSVR model and optimize its parameters. 
As a result of this study, the CSVR model estimate very well the break size of LOCAs. If the 
operators can predict the break size in the LOCA, they can response quickly and properly to 
LOCA circumstances to prevent the core uncovery and fuel failure. Also, it will be possible to 
more efficiently manage beyond design basis accidents.  

Key Words: Nuclear power plant (NPP), loss of coolant accident (LOCA), cascaded 
support vector regression (CSVR) 

1  INTRODUCTION 

Nuclear power plants (NPPs) are designed in consideration of design basis accidents 
(DBAs). However, if the emergency core cooling system (ECCS) is not working properly in a 
loss-of-coolant-accident (LOCA) situation, it can induce a severe accident that exceeds a 
DBA. Large break (LB) LOCA can easily detect the break position due to the pressure 
change of the measuring instrument. However, in a small break (SB) LOCA, the break 
position is difficult to accurately be identified due to small pressure change of the measuring 
instrument. The safety injection systems (SISs) might not function properly in case of a 
SBLOCA, due to the slight change of pressure in the pipes. In event of a SBLOCA, the 
reactor coolant system (RCS) pressure was reduced slowly. Therefore, the low-pressure 
safety injection (LPSI) system may not function properly, which can induce a serious 
accident. In order to turn on the LPSI system properly, the operators must manually open the 
power operated relief valves (PORV) [1-2]. In the case of a SBLOCA, the complete loss of 
high pressure safety injection (HPSI) is classified as a type of accident with a high probability 
of occurrence.  
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Plant operators will try to find out abnormal plant states by observing the temporal trends 
of some important parameters in the main control room (MCR). Operators take action based 
on emergency operating procedure (EOP), when a transient occurs in NPP.  Early trend of the 
major parameters has to be observed and the accurate information has to be given to the NPP 
operators by precisely estimating the break size to effectively manage accidents [3-5]. In this 
study, the objective is to provide to operators the information on the break size in a short time 
by considering the accident situations such as hot-leg LOCA, cold-leg LOCA, Steam 
generator tube rapture (SGTR). 

A cascaded support vector regression (CSVR) is used in order to estimate the break size. 
The inputs to CSVR are time-integrated values obtained by integrating measurement signals 
during a short time interval after reactor trip. The input variables to CSVR are the time-
integrated values of 13 simulated sensor signals. The simulation data set was obtained from 
the optimized power plant reactor 1000 (OPR1000) using modular accident analysis program 
(MAAP) code. And genetic algorithm (GA) was used to select the input variables of the 
CSVR model and optimize its parameters. The GA is a useful method for solving 
optimization problems with multiple parameters [6]. 

2 CASCADED SUPPORT VECTOR REGRESSION FOR LOCA BREAK 
SIZE  

A new SVR model based on serial connected SVR modules, termed CSVR, is proposed 
in this paper. SVR can handle and support regression tasks. Fig. 1 shows the architecture of 
the CSVR model [7]. 

Let a break size data set be expressed in the form {(Xi, yi)}i=1
N ∈ Rm × R , where X𝑖 is the 

input vector for an CSVR model. The SVR model output is expressed as [8].  

 y = f(X) = ∑ W𝑖ϕ𝑖(𝑋) + 𝑏 = WTϕ𝑖(𝑋)N
i=1 + 𝑏 = W𝑇ϕ(𝑋) + 𝑏 (1) 

where  W = [W1 W2 ⋯ WN]𝑇, ϕ = [ϕ1ϕ2 ⋯ ϕ𝑁]𝑇  

The function ϕ𝑖(𝑋) is expressed in the feature space. The input vector X is mapped into 
vector ϕ(X) of a high dimensional kernel-induced feature space. To estimate the break size; 
W ∈ Rm is the weight vector; b ∈ R is called the bias [9]. Here, it is very important to find 
the optimal values of W and b. Through the use of kernel, an input space of data can be 
mapped into high dimensional kernel feature space. Fig. 2 shows two-dimensional data 
mapped into a three-dimensional space. 

To construct an SV machine for real-valued functions, we use the ε- insensitive loss 
function: 

 M(y, f(x)) = L(|y − f(x)|𝜀) (2) 

where we denote 

 |y − f(x)|𝜀 = {
                   0                                               if|y − f(x)|  < 𝜀 

|y − f(x)| − 𝜀                                otherwise
 

Fig. 3 shows the linear ε - insensitivity loss function. 
In traditional SVR, in order to solve the quadratic optimization problem with these 

constraints, we can find the Lagrange function. The optimal problem can be resolved by 
Lagrange function, which is 
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   R(W, ξ, ξ∗) =
1

2
WTW + λ ∑ (𝜉𝑖 + 𝜉𝑖

∗)N
i=1  (3) 

The constraints are as follows: 

{

yi − WTϕ(X) − b ≤ ε + ξi, i = 1,2, ⋯ , N

WTϕ(x) + b − yi ≤ ε + ξi, i = 1,2, ⋯ , N

ξi, ξi
∗ ≥ 0, i = 1,2, ⋯ , N

 

The constraints on break size can’t always be satisfied without error and it is necessary to 
introduce nonnegative slack variables ξ𝑖  and ξ𝑖

∗. Fig. 4 shows the ε -insensitivity and slack 
variables ξ𝑖 and ξ𝑖

∗ for the CSVR model. Finally, the regression function of (1) becomes 

 y = f(X) = ∑ (αi − αi
∗N

i=1 )ϕT(Xi)ϕ(X) + b = ∑ βiK(X, Xi) + bN
i=0  (4) 

where β𝑖  is some real value and K(X, Xi)  is a kernel function. The training data that 
correspond to nonzero β𝑖 is called the support vectors. The coefficient β𝑖 is expressed by the 
Lagrange multipliers α𝑖 and α𝑖

∗. The radial basis function (RBF) function is the most often 
used to the nonlinear regression. Since the RBF with a Gaussian kernel produces the same 
type of decision rules that is produced by the SV machine [10]. Therefore, in this study, RBF 
was used. 

   K(X, Xi) = exp (−
(X−Xi)T(X−Xi)

2σ2 ) (5) 

The genetic algorithms (GA) are the most often used to solve optimization problems with 
multiple objectives. However, the GA requires much computational time and cost if there are 
many parameters involved. In this study, the optimal input values of CSVR parameters are 
obtained by using GA. Then these optimized parameters are used to construct the SVM 
model for estimation [11]. In this study, a fitness function is proposed as follows: 

 F = exp(−μ1E1 − μ2E2) (6) 

where μ1  and μ2  are weighting coefficients,  and E1 and E2  denote the root-mean-square 
(RMS) error and maximum absolute error, respectively. E1 and E2 are described as follows: 

 E1 = √
1

N
∑ (yk − ŷk)2N

i=1  (7) 

 E2 = maxk{|yk − ŷk|} (8) 

where  N denotes the number of data points and yk as well as ŷk are the target values and 
estimated values, respectively. 

3 APPLICATION TO LOCA BREAK SIZE 

In this study, we estimated the break size at three positions of hot-leg LOCA, cold-leg 
LOCA and SGTR. In the simulation, the inner diameters of the hot-leg, cold-leg and steam 
generator tube ate 1.0068m, 0.762m, 0.0169m respectively. Among a total of 200 simulations 
for each break position, the 200 accident simulation was divided into both 160 training data 
and 30 verification data except for 10 test data. Table 1 shows the estimation error of CSVR 
models, when there are no measurement errors. Development data is the sum of training data 
and verification data. This table shows that the RMS errors for test data are approximately 
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0.38%, 0.32% and 0.58% for the three break positions, respectively. Fig. 5-7 show the target 
and estimated break sizes for three LOCA positions using the CSVR models. The estimated 
break sizes of training data, verification data and test data are almost identical to the target 
values. 

In order to resolve the effect of the measurement errors on the CSVR model, 
measurement errors are assumed. Table 2 shows the estimation errors for the hot-leg, cold-
leg, SGTR when there are measurement errors. This table shows that the RMS error for test 
data are approximately 3.41%, 3.89% and 7.28% for the three break positions, respectively. 
Fig. 8-10 show the target, estimated break sizes and relative errors for three LOCA positions 
when there are measurement errors. For the SBLOCA case, the relative error is greater than 
LBLOCA and it is estimated more accurately as the break size increases. 

4 CONCLUSION 

In this study, we estimated LOCA break size by CSVR. The results show that the CSVR 
model can estimate the break size of the LOCA accurately. The RMS errors of the CSVR 
models do not exceed 8% for hot-leg LOCA, cold-leg LOCA and SGTR. The CSVR model 
requires only initial data for 20s after the reactor trip. Therefore, the estimation of break size 
is useful and important information for NPP operators when they are faced with accidents. If 
the operators can predict the break size of LOCA, they can response quickly and properly to 
LOCA circumstances to prevent the core uncovery and fuel failure. Also, it will be possible to 
more efficiently manage beyond design basis accidents.  
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Table I. Performance of the cascaded support regression model 
(Without instrument error) 

Break 
 position 

Number  
of SV 

Development data Test data 
RMS error 

(%) 
Max error 

(%) 
RMS error 

(%) 
Max error 

(%) 
Hot-leg 3 0.44 0.38 0.38 0.80 
Cold-leg 11 0.22 1.59 0.32 0.98 
SGTR 2 0.66 2.34 0.58 1.13 

 

Table II. Performance of the cascaded support regression model 
(Instrument error 5%) 

Break position Number of SV Test data 
RMS error (%) Max error (%) 

Hot-leg 3 3.41 11.75 
Cold-leg 11 3.89 18.08 
SGTR 2 7.28 37.90 
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Figure 1. Cascaded  support vector regression model (CSVR) 
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Figure 4. 𝛆-insensitivity and slack variables  𝛏  and 𝝃∗ for the SVR model 
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Figure 3. Linear  𝛆-insensitivity loss function 
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Figure 2. Two-dimensional data mapped into a three-dimensional space 
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Figure 5. Estimated break size (Hot-leg LOCA) 
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Figure 7. Estimated break size (SGTR) 
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Figure 6. Estimated break size (Cold-leg LOCA) 
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Figure 8. Estimated break size and relative error (Hot-leg LOCA instrument error) 
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Figure 9. Estimated break size and relative error (Hot-leg LOCA instrument error) 
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Figure 10. Estimated break size and relative error (SGTR  instrument error) 
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